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A numerical procedure for calculating the magnetic field of a solenoid is derived. Based on 
the properties of Bessel functions, the procedure is shown to be convergent everywhere, in 
eluding within the windings of the solenoid. The most critical part of the procedure is detailed 
in the main text. A simple method is used to ensure numerical significance while allowing 
economical computational times. In the appendix the procedure is generalized to universal 
convergence by appropriate partitioning of the solenoid windings. 

I. INTRODUCTION 

Any method of accurately calculating charged particle trajectories in solenoidal 
magnetic fields requires a knowledge of the magnetic field at every point along the 
path. The usual methods of calculating a magnetic field [l-51 are not well suited to 
the problem if a trajectory both inside and outside the magnet and far from the axis 
of the solenoid is required. Some methods also have difficulty if the solenoid is thin, 
or high accuracy is required. The following method based on the properties of Bessel 
functions and Fourier Bessel transforms has characteristics that make it well suited to 
the problem. The same algorithm can be used to calculate the magnetic field 
everywhere without having to transform the origin. The resultant series expansion in 
I-, the distance from the axis, converges rapidly, and the method is easily program- 
med. There are no restrictions on the allowable aspect ratio of the magnet. 

Using this technique, a numerical procedure was evolved having a wide variety of 
applications. The main body of this paper deals with deriving the fundamental for- 
mulas applied to generating a series in positive powers of r. A variation of the 
method, producing a convergent series in negative powers of r, is introduced in such a 

way as to yield a procedure that converges everywhere, even within the windings of 
the solenoid. 

* The U.S. Governments right to retain a nonexclusive, royalty-free license in and to any copyright 
covering this article, for U.S. Government purposes, IS acknowledged. 
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II. MATHEMATICAL THEORY 

A magnetic field, B, in a current-free medium can be derived from a scalar 
potential, 4. Thus, 

Bz-Vq$ (1) 

and 
v’g = 0. (2) 

Equation (2) can be solved for 4 if 4 is specified on some boundary. As an 
important case, the apparent magnetic potential of a circular loop of current can be 
written in the plane of the loop as 

4 = Go if r < R viewed from z > 0, 

= - +zp, if r < R viewed from z < 0, 

=o if r>R, 
(3) 

where Z is the circulating current, ,u, is the permeability of the medium, R is the 
radius of the loop, and r is the distance from the center of the loop. 

Because of cylindrical symmetry, 4 can be expressed everywhere for z 2 0, except 
at the radius of the loop, as the Bessel transform [6] 

where the origin of the cylindrical coordinates is at the center of the loop. The 
function A(& R) depends only on 1, R, po, and the current I. 

Using Eq. (3), Eq. (4) can be solved for A@, R) in the plane of the loop from 
Bessel transform theory [61. The resulting potential is 

$(r, z) = GZRpo irn J,(kR) J,(Ar)e- A dl. 
0 

(5) 

From Eqs. (1) and (3) the components of the field can be found: 

(6) 

and 

** B, = -aqi/ar = sgn(zs ZRpu, 
J 

A.J,(,lR) J,(lr)eC”“’ dA, (7) 
0 

where sgn(z) = f 1 for z 5 0. The function sgn(z) determines the sense of a positive 
current, counterclockwise or clockwise, when viewed from z > 0. 
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The field of an axially symmetric solenoid can be derived as a superposition of 
loop fields given in (6) and (7). Given a solenoid with rectangular cross section, inner 
radius R,, outer radius R,, and width 2z0, let the origin of a cylindrical coordinate 
system be at the geometrical center of the coil with the z axis aligned with the axis of 
the solenoid. It will further be assumed that the current in the solenoid is distributed 
evenly throughout its cross section. Equations (6) and (7) can then be integrated over 
the cross section to give the field for ] z ] < zO : 

B, = bo 
i 

O” J,(,lR) J,(h) [ 1 - e-“’ cash Lz] dA (8) 
0 

and 

For ]z/ > zOr 

and 

B, = ZP, 
I 

O” .Z, (AR) .Z, ()Lr)eCAzO sinh Az dL. 
0 

(9) 

B, = Zpo~~j2 RdR lam J,(~R)Jo(Ar)e-A”’ sinh Az, dk (10) 

B, = 4, 
J;; .c 

cl? RdR J1(AR) J,@r)e-*I” sinh AZ, sgn(z) dl, (11) 
0 

where Z is now the current density in the solenoid’s cross section. 
Numerically Eqs. (8~(11) present two main cases for integration: 

and 

S,,(r, z) = JR’ RdR jrn J,(AR) J,(Ar)e-” dl 
RI 0 

(12) 

S,,(r, z) = JR2 RdR Iv) J,(AR)J,(h+-.“dL (13) 
RI 0 

By allowing z. to become very large in Eq. (8) it can immediately be deduced that 

g,,(r) = 1” RdR 1” JI(kR) Jo(h) dL, 
RI 0 

=R,-R, if r<R,, 

=R,-r if R,<r,<R,, 

=o if r>Rz, 

(14) 
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because as zO+ co the exponential term in the bracket vanishes. The field in this case 
becomes a constant where r < R, , equal to I& (R, -R,), hence Eq. (14). Equation 
(14) is a special case of a discontinuous Weber-Schafbeitlin integral [ 7,8]. The 
meaning of Eq. (14) is that solutions obtained by the methods outlined below will 
describe the field of a solenoid everywhere they converge, including inside the 
windings of the solenoid. 

In terms of the S integrals, for / zI < zO : 

For /zI > zo: 

and 

B, =+Zp,[S,,(r, z. - z) - S, ,(r, z. + z)]. (16) 

Br =~@ou,lS,o(r~ lzl - zo) - Slo(r3 /z/ + zo)l (17) 

(18) 

III. CALCULATING THE S INTEGRALS 

The first method of choice in evaluating Slo(r, z) and S, ,(r, z) was to expand the 
respective integrands in powers of r. In theory, these power series could be generated 
from a knowledge of the z derivatives of the field along the axis, which can be written 
in closed form 191. Using the properties of Bessel functions, however, greatly sim- 
plifies this task. 

For example, Eq. (12) can be rewritten by expanding f,(h): 

(19) 

The A integral can be evaluated from the general formula [ 8 ] 

I_ 
* 

t”J,(t sin p)ePrcosd dt=l-(n+k+ l)P,‘(cosp), (20) 
‘0 

where r(j) is the gamma function and Pikk) is the associated Legendre function of 
the first kind of degree n and order -k. 
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A form for this associated Legendre function with k equal 1 can be found in 
Sneddon’s book [lo], referred to as Ferrer’s function, 

P, ‘(x) = (1 - xX)--“2 [” p,(x’) &‘. 
. I 

(21) 

Using the power series expansion for Legendre functions 17 1, one obtains 

&,@-A= \‘ 
m (-1)“(2m + l)! + ft 

(-1)X( ‘k”)( 4m2;2k) 

ZO 
24mtl (m!)’ k=O m+$-k 

X 
~~R2+z2]-m-Z2m+l-2k [~*+~*]-*m-(I;*~tk~d~, (22) 

where 

The original Bessel function integrals over the volume of the windings is thus reduced 
to the sum of the elementary integrals in Eq. (22). 

Renaming the integral 

K,,(z) = jR* (R* + z’]- m dR, 
'RI 

(24) 

the S integrals can be written 

S,,(r, z)= f rzm + Ctl’~k[K2,(z)-z2”+‘-2kK4,t,~2k(Z)] (25) 
m-0 k=O 

and 

rZm f C~~k[K2m+,(~)-z2m+2~2kKjmt3~2k(~)], (26) 
m-0 k=O 

where 

and 

c;;.” = 
(-I)‘~+k(2m + l)! ( 2;) ( 4m2;2k) 
__- 

2 J’“+‘(m!)‘(m +-k -r 

(-1)“+k(2m + 2)! 
4m+2-2k 

m.k _ 
c, - 

(2mkf1)( 2m+l ) 
2 4”t3m!(m + l)! (m + 1 -k) ’ 

(27) 

(28) 
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The C coefficients are independent of r and z and need only be calculated once. 
The values of the K,(z)‘s may be found as follows: The substitution 

R = z tan 0 (29) 

in Eq. (24) reduces it to the form 

K,,(z) = ZIPZrn I 82 (cos 8)2m - ’ d8. (30) 
81 

Knowing K,,(z) for m = 0, -k, 1, and +, it is possible to determine all the K2,(z)‘s 
by forward recursions, i.e., using the relation, 

I 
1 n-l 

cos”xdx = n COP’x sin x + - 
I 

cos n-2 xdx. 
n 

For small values of z the use of (31) introduces inaccuracies due to loss of 
significance. A value of z must then be chosen, below which forward recursion can- 
not be relied upon for a given numerical significance. Instead, the integral in Eq. (30) 
can be expanded as an ascending power series in cos 6’ to any desired accuracy using 
Eq. (31): 

I (cos O)m d0 = - sin 6’ (cos O)m+i -&- 
m + 2 cos’8 + --- -+... . 
m+l m+3 1 (32) 

It is easy to see that Eq. (32) will not converge very quickly if 

cos f3 z 1. (33) 

It is therefore not economical to use the expansion in (32) every time just to avoid 
forward recursions in Eq. (31). 

Experience using the above procedure showed that, for a given set of solenoid 
dimensions, a crossover value z, could be chosen. For z > z, forward recursion using 
(3 1) was performed with 25-digit accuracy. For z \<, zc, Eq. (32) was used. To es- 
timate the extent of the loss of significance for small vaIues of z in forward recursion 
suppose 

z=zc. (34) 

Then define 

=I 

82 m+2 dR 
A m+*- cos 

81 
m+2 b’cIb’=l;: ,R2 ~z~,~1,2,m+~~ (35) 

so that 

(zclR,)‘4 > A,,, > (z,/R,)~&. 
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The number of significant decimal digits, N, lost per forward iteration evidently 
satisfies 

-2 log(z,/R ,) < N < -2 log(zJR,). Wa) 

Care must then be taken such that at the end of a sequence of forward recursions 
there is enough significance left to give an accurate answer. In the next section a 
technique will be described that reliably calculates magnetic fields of solenoids taking 
these numerical constraints into account. 

IV. NUMERICAL PROCEDURE 

The most difficult task encountered in implementing the above theory was to avoid 
loss of significant digits as a result of recursions and cancellation of large numbers. 
Convergence of the power series expansions for S,,(r, z) and S,,(r, z) is discussed in 
the appendix, where it is shown that there are two overlapping regions of convergence 
corresponding to two different methods of expanding the integrals. The method below 
converges in the region including the entire axis of the solenoid and in fact converges 
for some r > R, beyond the ends of the solenoid where R, is the inner radius of the 
solenoid. 

When discussing the relative merits of using Eqs. (31) and (32), it was mentioned 
that a crossover point was chosen so that if z > z,, E?q. (3 1) was implemented using 
double precision (25 digits). If z < zE, Eq. (32) was used with single precision. A 
satisfactory value for z, was found to be 

z, =-f-R,. (37) 

A maximum of 40 terms is retained in the square bracket in Eq. (32). The highest 
power of r retained in S,, is ri’. The highest in S,, is r19. 

Equations (27) and (28) were not used directly to derive the Cs because of possi- 
ble overflow problems. Instead the following set of recursions was used: 

c;*” = 1, 

,y. k 0 

(m - k + 1)(2m - 2k + l)(m + i-k) Cm.km~, =-___ -- k(4m-2k+ l)(m+;-k) 0 1 

and 

,,, k (4m + 1 - 2k)(m + :-k) Cn,.k c, 1 = -____ 
(2m + 1 - 2k)(m + 1 - k) ’ ’ 
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and 

m.k c, = (4m + 1 - 2k)(m + + - k) m,k 
(2m + 1 - 2k)(m + 1 - k) co * 

Using the integral [7] 

I m tU J,(t) dt = 2”T 
0 

(“‘:“)/r(y+‘), 

it can be shown that 

(384 

(39) 

(40) 

This means that the term K,,(z) with m # 0 in Eq. (25) does not contribute to the 
sum and can be eliminated. Doing so makes very little difference in the final result 
for most values of z. Equation (40) serves as a valuable check on the calculation of 
the c’s. A more involved analysis can be applied to the Cy,“s. To the accuracy we 
needed, it made no difference when the Cy,” sum on k was replaced. Convergence to 
at least six significant figures was always possible with 19 powers of r for r <R, . 

As an example, a solenoid with 

R, = 2.5 cm, 

R, = 16.0 cm, 
(4 la) 

(4lb) 

and 

z. = 2.5 cm (4 lc) 

was calculated. The current density was taken to be 1.3 x lo4 A/cm2. At the center of 
the solenoid the z component of the magnetic field was 

B, = 6.83722 Tesla. (42) 

Tables I, II, and III show the convergence of the magnetic field at points 2.5 cm 
from the axis. ‘Convergence further from the axis is discussed in the appendix. The z 
coordinate is measured from the center of the solenoid. Depending on the distance 
from the edges of the solenoid and the distance from the axis, convergence can take 
from under 1 msec to approximately 5 msec on a CDC 7600. 

V. DISCUSSION 

The theory outlined in the previous sections turns out to be a straightforward 
numerical procedure. Because of the potential for loss of significance, care must be 
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TABLE I 

R, = 2.5 cm, r2 = 16 cm, I = 1.3 x IO4 A/cm’. 
(r, z) = (2.5,O) cm 

Highest power of r B, (Tesla) B1 (Tesla) 

1 0.0 6.83722 
3 0.0 7.646 10 
5 0.0 7.49653 
I 0.0 7.485 13 
9 0.0 7.48348 

II 0.0 7.48446 
13 0.0 7.4846 1 
15 0.0 7.48449 
17 0.0 7.48447 
19 0.0 7.48449 
21 0.0 7.48449 

TABLE II 

R, = 2.5 cm, R, = 16 cm, I = 1.3 X 10” A/cm2, 
q, = 2.5 cm, (r, z) = (2.5, 2.5) cm 

-- 

Highest power of r B, (Tesla) B, (Tesla) 

1 0.985 1928 5.712192 
3 1.010640 5.911321 
5 1.010519 5.908042 
7 1.010537 5.907809 
9 1.010536 5.907865 

11 1.010536 5.907859 
13 1.010536 5.907859 

TABLE III 

R, = 2.5 cm, R, = 16 cm, I= 1.3 X lo4 A/cm’, 
z,, = 2.5 cm, (r, z) = (2.5, 5.0) cm 

Highest power of r B, (Tesla) B1 (Tesla) 

1 0.825 1600 3.775 101 
3 0.8206319 3.584169 
5 0.80788 11 3.564366 
7 0.8087418 3.570087 
9 0.8096119 3.570912 

11 0.8095 179 3.570430 
13 0.8094174 3.5 70348 
15 0.8094305 3.570408 
17 0.8094449 3.5704 19 
19 0.8094428 3.570410 
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taken if its use is extended into regions with large values of r. The trouble is due in 
part to the need for precise evaluation of integrals, such as those found in Eq. (36) 
for small values of z. This defect can be circumvented, however, by choosing the 
appropriate recursion relations in the direction of higher accuracy. 

Another factor affects the accuracy of these calculated integrals. For large values 
of r the magnetic field is small but the first few terms of the power series can be very 
large. Thus, a loss of significance is incurred as these large numbers are summed. 
Since the above expansion was not used in this region, it was not judged economical 
to generate a more accurate algorithm for the integrals. In the appendix a method is 
developed that extends the region of stable convergence by summing series of 
negative powers of r. 

Experimentation with the method detailed above shows that convergence improves 

TABLE IV 

R, = 2.5 cm, R, = 16 cm, I = 1.3 x lo4 A/cm*, 
z. = 2.5 cm, (r, I) = (5.0, 7.5) cm 

Highest power of r 

1 
3 
5 
7 
9 

11 
13 
15 
17 
19 

B, (Tesla) 
____ -~ 

1.011484 
0.8761310 
0.8125797 
0.8887247 
0.879 1547 
0.8815285 
0.8827050 
0.8810454 
0.8818667 
0.881883 

B, (Tesla) 
- 

2.468339 
1.975846 
2.010794 
2.026500 
2.012162 
2.018027 
2.017900 
2.016149 
2.017492 
2.017130 

TABLE V 

R, = 2.5 cm, R, = 16 cm, I = 1.3 x lo4 A/cm’, 
z,, = 2.5 cm, (r, z) = (16, 22.5) cm, 

Highest power of r B, (Tesla) B, (Tesla) 

1 0.2868293 0.3388440 
3 0.09284060 0.03210549 
5 0.1657673 0.17 10878 
7 0.1472648 0.1299535 
9 O.lSll418 0.1388841 

11 0.1499722 0.1368353 
13 0.1504776 0.1376258 
15 0.1503227 0.1373119 
17 0.1503218 0.1373698 
19 0.1503598 0.1373990 



BESSELTRANSFORM METHOD 51 

as the distance from either end of the solenoid increases. Using the example of the 
previous section, Table IV shows the convergence at a point with r = 5 cm (twice the 
inner radius) at 7.5 cm from the center of the solenoid. Table V shows the con- 
vergence at r = 16.0 cm, 22.5 cm from the center. An exact relation for the regions of 
convergence is derived in the appendix. 

In short, the numerical technique described above is easy to program, fast running 
on a digital computer, capable of delivering high accuracy, and flexible enough to 
compute a large range of particle trajectories, parts of which lie at an appreciable dis- 
tance from the axis. 

APPENDIX: CONVERGENCE OF SERIES FOR S,, AND S,, 

Using Eq. (20), Eq. (19) may be written 

a, (-l)m r*"(h + l)! 
S,,(r, z) = T 

R2 

!ZO 2*ym!)* - R, i 
R(R* + Z2)-mp’/2 p;,’ 

(Al) 

In order to study the convergence of the sum in (Al), it is necessary to know the 
behavior of the integral for large values of M. Using the transformation in Eq. (29), 
the integral in (Al) becomes 

H!?l =z-2m+1 i”’ sin B(cos Q2,-* P;,‘(cos e) de. (A21 
‘81 

As m + co, the asymptotic form [7] of P;,‘(cos 8) can be used to give 

(A3) 

x Is’ ( sin ep* (COS ep-2 
. a1 

cos[ (2m+J e-y de, 

where the gamma function, rk), has been introduced. From the mean value theorem 
a 8 can be found such that 

4dw, 644) 

and 

(A5) 
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It is evident that H,,, is finite for all values of z. This need only be proved for the 
case z = 0. From Eq. (29), 

cos e= z[R* + zy*. (*6) 

Thus as z -+ 0, 

cod<z/R,. (*7) 

Expanding the bracketed term in (A6) in powers of (z/R)* yields the limiting value as 
z + 0, 

8,-8,-z(R,‘-RF’). (A81 

Thus as z -+ 0, 

-l/2 

(R;’ -R;‘)R;*“‘+*. (*9) 

For large values of m Stirling’s approximation can be used to show that as z -+ 0 

(H,,l < (4 n)-“’ R;2m+1(2m +-$)-I”. (*lo) 

Equation (A6) may now be substituted into (A5) for all values of z # 0 with 
assurance that the resultant analysis will be valid for z = 0: 

H, - (G x)-~‘* (2m + G)-3’2 [(O, - 8,)~~‘1 l?[a2 + z*]-(~‘*)(~~~~), (Al 1) 

where R’ is defined by 

cos P = z[R’ + z’] -I’*. 6412) 

As m + 00 it is not difftcult to see that 

ILR,. (*13) 

This is because the largest value of cos 0 in (A3) is at R = R, . 
Replacing the integral in Eq. (Al) with the asymptotic expression for H,, it is evi- 

dent that the series for S,,(r, z) will converge if 

r < [R; + z*]“*. (*14) 

A similar analysis yields the same radius of convergence for S, ,(I, z). 
In Eq. (Al4), as well as Eqs. (12) and (13) of the text, z is measured from the ends 

of the solenoid. Geometrically this means that the region of convergence in an (r, z) 
plane will lie below the upper limbs of the hyperbolae 

r*-z*=R:, (*15) 
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centered at the ends of the solenoid and above the z axis. Even though this is already 
a large and useful region of convergence, it can be extended to cover the entire (r, z) 
plane. 

To see this it is necessary to go back to Eqs. (12) and (13). Instead of expanding 
J,,(Lr)‘s in ascending power series of (Lr), the Bessel function J,(U) is expanded: 

where v = 0, 1. The integrals in (A16) can be evaluated using Eq. (20) so that 

S,,(r, z) zz 5 

2mt3 

(-lRR2 
- Rtmt3) (2m + v + l)! --- 

nt=O 2Zm+‘(2m + 3) m!(m + l)! 

x [r*+zym+‘)P;;+, 
( (T2 +zr2)14 * 

By substituting the asymptotic expression [7] for P,-,“+ I, as m -+ co, into (A17), as 
well as using Stirling’s approximation to evaluate the factorials, it is easy to show 
that (A 17) converges if 

rZ+z2>R:. (Al81 

Note that (Al 7) has powers of r in the denominator of each term, but is not an 
asymptotic series. In constrast with the terms in (Al) the terms in (A17) can be 
evaluated with little loss of significance, except at zeros on the interval -I <x < 1, 
by the forward recursion relation [7] 

P,,“,oI) = [(h + l)xP,“(x) - (n + v) P,=“,ti)] 

x [n + 1 + PI-‘, 6419) 

where 

Pik) = P” 101) = 1 (A20a) 

and 

P,‘(jy)= PI:t.Jo = [(I -x)/(1 +x)y 

can be used to start the recursions. 

(A20b) 

Geometrically, (A18) means that Eq. (A17) converges in the region of the (r, z) 
plane outside the semicircles 

r2=z2+Ri Wl) 

bounded below by the z axis and centered at the outer boundaries of the solenoid. 
Figure 1 shows the region in the (r, z) plane where neither (Al) nor (A17) will 
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FIG. 1. Region of nonconvergence for two expansions. Points in the shaded area cannot be 
calculated using either (Al) or (A17). 

. 
.? 

FIG. 2. Partition of solenoid winding for convergence. Point P in Fig. 1 defines a partition of the 
solenoid winding into two parts in such a way that the calculation converges at P. The shaded region of 
nonconvergence now does not include P. 

converge. A point P in the shaded area cannot be calculated using only the series in 
(Al) or the series in (A17). 

It is possible to calculate the field at the point P in Fig. 1 by dividing the solenoid 
into two sections, as in Fig. 2. Dividing the solenoid winding into parts with r > rP 
and r < rp, (A17) can be applied to calculate the field due to the lower part while 
(Al) can be applied to calculate the field due to the upper part. In this way the field 
can be calculated at any point in the (I, z) plane with assurance that the series being 
summed is convergent. Economical achieving this convergence numerically is possi- 
ble in practice using the information given above. 
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